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The Relationship between Imputation Error and
Statistical Power in Genetic Association Studies
in Diverse Populations

Lucy Huang,1 Chaolong Wang,1 and Noah A. Rosenberg1,2,3,*

Genotype-imputation methods provide an essential technique for high-resolution genome-wide association (GWA) studies with

millions of single-nucleotide polymorphisms. For optimal design and interpretation of imputation-based GWA studies, it is important

to understand the connection between imputation error and power to detect associations at imputed markers. Here, using a 2 3 3 chi-

square test, we describe a relationship between genotype-imputation error rates and the sample-size inflation required for achieving

statistical power at an imputed marker equal to that obtained if genotypes at the marker were known with certainty. Surprisingly, typical

imputation error rates (~2%–6%) lead to a large increase in the required sample size (~10%–60%), and in some African populations

whose genotypes are particularly difficult to impute, the required sample-size increase is as high as ~30%–150%. In most populations,

each 1% increase in imputation error leads to an increase of ~5%–13% in the sample size required for maintaining power. These results

imply that in GWA sample-size calculations investigators will need to account for a potentially considerable loss of power from even low

levels of imputation error and that development of additional genomic resources that decrease imputation error will translate into

substantial reduction in the sample sizes needed for imputation-based detection of the variants that underlie complex human diseases.
The genotype-imputation strategy for case-control genetic

association studies provides an economical way of assess-

ing many more genetic markers for disease association

than have actually been measured in any particular associ-

ation study.1–5 In this approach, case and control individ-

uals are first genotyped for markers densely spread across

the human genome. The measured genotypes are then

combined with high-resolution genotypic data from

genomic databases for imputation of the genotypic status

of study individuals at markers investigated in the database

but not in the study sample. This imputation relies on the

principle that two haplotypes identical in genotype at

nearby SNP markers are likely to share intervening chro-

mosomal stretches identically by descent. Thus, if a haplo-

type in a densely genotyped database sample is identical to

a haplotype in a more sparsely genotyped study sample for

markers that overlap between the study and the database,

then one can impute the study haplotype with high reso-

lution by copying the haplotype from the database.

Methods relying on genotype imputation have proven

effective for identifying high-risk disease-associated

genetic variants, in part because they dramatically increase

the number of markers that can be directly tested for asso-

ciation in comparison to earlier tag-SNP designs.6–10

However, the imputation strategy utilizes in its association

tests estimated genotypes that are not known with

certainty, and errors in imputed genotypes might poten-

tially compromise the power of an imputation-based asso-

ciation test. For example, at a biallelic marker, consider a

disease-susceptibility allele of small effect that has a true

frequency of 0.3 in cases and 0.2 in controls. If the proba-

bility that imputation recovers the true allele is 0.9, then
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the frequency of the disease allele among imputed geno-

types will be (0.3)(0.9) þ (0.7)(0.1) ¼ 0.34 in cases and

(0.2)(0.9) þ (0.8)(0.1) ¼ 0.26 in controls. Imputation error

converts an allele-frequency difference of 0.3 � 0.2 ¼ 0.1

between cases and controls into a smaller difference of

0.34 � 0.26 ¼ 0.08. As a result, for the imputed genotypes,

one might require a larger sample size in order to deter-

mine that allele frequencies differ between cases and

controls, as compared to the smaller sample size that

would be required if the true genotypes were known.

Although recent studies have found that imputation error

rates are generally low,11–15 it is possible that even low error

rates could have considerable effects on downstream anal-

yses. How does the error inherent in genotype imputation

reduce the power of an association study when alleles at

the true disease SNP are imputed rather than known? An

answer to this question is important to the design and inter-

pretation of imputation-based association studies. Relating

imputation error and power would assist investigators in

calculating sample sizes required for detecting disease

variants at loci whose genotypes are imputed, as well as in

determining whether imputation studies in particular pop-

ulations are likely to be underpowered. Additionally, a rela-

tionship between imputation error and power would aid in

the development of resources for genomic studies. For

example, use of such a relationship could assist in the iden-

tification of populations in whom existing resources

produce high error rates that limit the potential for practical

mapping of risk variants with imputation strategies.

The problem of connecting imputation error to power is

similar to a corresponding problem in the context of tag

SNPs. In the imputation context, the loss of information
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as a result of imputation error at a disease-susceptibility

locus can obscure the association between the locus and

disease. In the tag-SNP context, the loss of information

as a result of using a tag SNP rather than the true disease

SNP has an analogous effect. In both situations, missing

information about the correct genotypes at the true

disease-susceptibility locus contributes to a loss of power

for detecting disease association.

For the tag-SNP context, consider two loci, a SNP caus-

ally associated with disease and a nearby tag SNP. If the

r2 correlation statistic for linkage disequilibrium (LD)

between the tag SNP and the disease SNP is equal to c,

then a chi-square test statistic for disease association at

the true disease SNP in a case-control sample of total size

N has approximately the same asymptotic distribution

under the alternative hypothesis of disease association as

the corresponding chi-square statistic at the tag SNP in

a case-control sample of size N/c.16 Thus, the ‘‘sample-

size inflation factor’’ required in using the tag SNP in an

association study rather than the true disease SNP is ~1/c.

Motivated by this result, investigators have proposed

multiple versions of an r2 correlation statistic between the

imputed genotypes at a SNP and the true genotypes.17–19

Such statistics, which are sometimes used for identifying

markers imputed with high accuracy in imputation-based

genome-wide association (GWA) studies,6,20 have been

viewed as conceptually analogous to the r2 statistic for LD

between a tag-SNP and a disease SNP, but they have not

been shown to be mathematically equivalent to it. In the

imputation context for a biallelic SNP with alleles A and

B, the correlation between true and imputed genotypes is

a function of a 3 3 3 table, in which each of three possible

true genotypes (AA, AB, BB) has one of three possible impu-

tations. In the tag-SNP context, however, if the disease SNP

has alleles A and B and the tag SNP has alleles C and D, then

the corresponding table is a 2 3 2 table, containing entries

for the counts of the four possible haplotypes (AC, AD, BC,

BD). Although the close analogy between the tag SNP and

imputation contexts suggests that the relationship between

imputation error and power is similar to that observed

between power and LD with a tag SNP, at present the

connection between imputation r2 statistics and power

remains informal.

Here, in order to investigate the mathematical relation-

ship between imputation error and power, we adapt a

method developed for evaluating the relationship between

genotyping error and power.21,22 Our approach does not use

an r2 statistic, and unlike the inflation factor in the tag-SNP

context, which depends only on the LD between the tag

and disease SNPs, the corresponding inflation factor in

the imputation context is a function of nine parameters.

Consider two 2 3 3 chi-square tests of association, exam-

ining the relationship between the three possible geno-

types of a biallelic marker and case-control status. The first

test uses the true genotypes of the marker, whereas the

second test uses genotypes measured with the possibility

of imputation error. Suppose that k is the ratio of the
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number of controls to the number of cases. Denote by

MAFcontrols the frequency of the minor allele in controls,

and by MAFcases the frequency of this same allele in cases.

Thus, 0 % MAFcontrols % 1/2 and 0 % MAFcases % 1. We

label the minor allele in controls by A, the major allele

in controls by B, genotype AA by 1, AB by 2, and BB

by 3. For i, j ˛ {1, 2, 3}, we let 3ij be the probability

that genotype i is imputed as genotype j. Because
P3

j¼1 3ij ¼ 1 for each i, only six error parameters must be

considered: 312, 313, 321, 323, 331, and 332.

Gordon et al.21 and Kang et al.22 determined the rela-

tionship between the two 2 3 3 chi-square test statistics

at a locus, showing that the test statistic for association

between true genotype and disease in a sample of size N

has the same asymptotic distribution as the test statistic

for association between imputed genotype and disease in

a sample of size Nf, in which f R 1 is a rational function

of 312, 313, 321, 323, 331, 332, k, MAFcases, and MAFcontrols

that represents the sample-size inflation factor. Thus, if

a sample size of at least N is required for achieving a speci-

fied level of power when genotype is measured without

error, then a sample size of at least Nf is required for

achieving the same power when genotype is imputed

with error. We use a special case of the formula for f,

assuming k ¼ 1, so that a study has an equal number of

cases and controls. We also assume that Hardy-Weinberg

proportions are satisfied separately in cases and controls.

With these assumptions, the sample-size inflation factor

due to imputation error can be written as f ¼ g/g*, defining

g and g* as in equations 1 and A.1 of Kang et al.22 and

matching our notation to that of Kang et al., with the

substitutions P01 ¼MAF2
cases, P02 ¼ 2MAFcases(1 �MAFcases),

P03 ¼ (1 � MAFcases)
2, P11 ¼ MAF2

controls, P12 ¼ 2MAFcontrols

(1 � MAFcontrols), and P13 ¼ (1 � MAFcontrols)
2.

To evaluate the sample-size inflation factor f at levels of

imputation error appropriate for typical association

studies, we first estimated the six error parameters by using

genotypes of 426 individuals in 29 diverse populations.

Employing reference panels of phased haplotypes based

on ~2,000,000 SNPs in 210 HapMap Phase II individuals

together with ~500,000 SNPs from a worldwide study,23

we imputed individual genotypes at markers that were

included in the reference data but not in the worldwide

study. For each population, we repeated the imputations

underlying Figure 7 of Huang et al.,19 using the same proce-

dure that was used by Huang et al.,19 to obtain an imputed

data set of 513 markers. This set consisted of probabilistic

imputations relying on the subset of reference individuals

that, among seven choices in the work of Huang et al.,19

produced the highest imputation accuracy for that popula-

tion. The genotypes of Pemberton et al.,24 which update

those reported by Conrad et al.,25 were treated as true geno-

types of the 513 markers for measurement of 3ij. For each

population, at each marker, the minor and major alleles

were determined only with the use of the ‘‘true’’ genotype

data from that population. If each allele had a frequency of

50%, then the minor allele was assigned at random.
Journal of Human Genetics 85, 692–698, November 13, 2009 693
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Figure 1. Genotype Misclassification Rates at Imputed Loci, in Each of 29 Populations
Each bar plot presents a particular error rate 3ij, in which 3ij represents the probability that genotype i is imputed as genotype j (1, minor
allele homozygote; 2, heterozygote; 3, major allele homozygote). For each population, the greatest of the six error rates is shown in
a color characteristic of the geographic region of the population. For convenience in interpreting the figure, the vertical dashed line indi-
cates 15% error. The values plotted in the figure appear together with the overall imputation error rate in Table S1.
Treating the 426 individuals as unaffected, we classified

218,345 true genotypes (426 3 513, excluding missing

data) by category, and for each population, we estimated

312, 313, 321, 323, 331, and 332. Each true genotype was cate-

gorized as follows: 1, minor allele homozygote; 2, hetero-

zygote; 3, major allele homozygote. Considering all true

genotypes in a population at all 513 markers, denote the

number of true genotypes of types 1, 2, and 3 by n1, n2,

and n3, respectively. For each population, n1, the smallest

of the three quantities, was at least 70, so that at least 70

true genotypes were used in estimating each error param-

eter. For n1, n2, and n3, the medians across populations

were 411, 1967, and 3679, respectively.

To incorporate the uncertainty inherent in imputing

a genotype, we obtained posterior probabilities of

imputing types 1, 2, and 3. Considering the ni geno-

types of type i, denote the posterior probability that

genotype [ was imputed to have type j by qij[. For

each i, j ˛ {1, 2, 3}, i s j, we computed 3ij for the pop-

ulation as
Pni

[¼1 qij[=ni. The ‘‘overall imputation error

rate,’’ a weighted average of the 3ij that evaluates the

total fraction of alleles imputed incorrectly, was calcu-
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lated as ½ð312=2þ 313Þn1 þ ð321=2þ 323=2Þn2 þ ð331þ
332=2Þn3�=ðn1 þ n2 þ n3Þ.

For each population, Figure 1 displays the estimated

values of 3ij. In most populations, the highest imputation

error rate is 312, indicating that, conditional on true geno-

type, the highest-probability error is misclassification of

a minor allele homozygote as a heterozygote. The next

highest error rate is usually 313 or 323, reflecting misclassifi-

cation probabilities for minor allele homozygotes or

heterozygotes, respectively, as major allele homozygotes.

Misclassification probabilities for major allele homozy-

gotes or heterozygotes as minor allele homozygotes (331

and 321, respectively) are generally low.

Treating the estimated values of 3ij as parametric values,

for each population, we evaluated the sample-size inflation

factor f for various choices of the unknown MAFcases and

MAFcontrols. Because the difference d¼MAFcases�MAFcontrols

can be viewed as a measure of the magnitude of the associ-

ation at a disease locus, we reparametrized f in terms of

d and MAFcontrols. Thus, using observed levels of imputation

error, we examined the properties of f across the range of

possible frequencies for the disease allele in cases and
ber 13, 2009
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Figure 2. Sample-Size Inflation Factor f Required for Maintaining Statistical Power at Imputed Loci, as a Function of the True Differ-
ence in the Frequency of the Minor Allele between Cases and Controls
Each plot utilizes the estimated imputation error rates in Figure 1 for a specific population. For each population, the inflation factor is
plotted for five choices of the true minor allele frequency in controls (0.05, 0.15, 0.25, 0.35, and 0.45). Note that MAFcontrols ranges from
0 to 0.5, whereas MAFcases, representing the frequency in cases of the minor allele in controls, ranges from 0 to 1. We used a step size of
0.001 for MAFcases and disregarded points with MAFcases ¼ MAFcontrols.
controls (Figure 2). For most choices of the parameter

values in most populations, the inflation factor f lies

between 1.1 and 1.6. For most African populations, consis-

tent with their higher imputation error rates, f is consider-

ably greater than in other populations, ranging from 1.3 to

2.5 for most choices of the parameter values. The inflation

factor is especially high in the San and Mbuti Pygmy pop-

ulations, in which nearly all choices examined for d and

MAFcontrols produce f T 1.7. Disease alleles are difficult to

detect when jdj is small, and Figure 2 demonstrates that

for several populations, the sample-size inflation factor is

greatest for small jdj, particularly when the disease locus

has a low minor allele frequency of MAFcontrols ¼ 0.05.
The American
Because the parameters MAFcases and MAFcontrols are

unknown in actual association studies, for each popula-

tion, conditional on the imputation error parameters 3ij,

we examined the minimal and maximal values of the

sample-size inflation factor f across the range of possible

values for MAFcases and MAFcontrols (Figure 3). For most

non-African populations, across most of the range of

possible values for the minor allele frequency in controls,

the minimal f is typically in the range of 1.1–1.2 and the

maximum is typically in the range of 1.2–1.6, indicating

that the extra sample size required for maintaining power

is usually at least 10%–20% and at most 20%–60%. The

maximal f is generally greater for low values of MAFcontrols.
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Upon examining the minimal and maximal sample-size

inflation factor across the range of disease allele frequen-

cies (Figure 3), we observe that the values are greatest in

populations with the highest imputation error rates

(Figure 1). Figure 4 quantifies this observation, illustrating

the relationships with overall imputation error rate of the

minimal and maximal values of f. A linear regression of

the minimal sample-size inflation factor on overall impu-

tation error rate when MAFcontrols is fixed at 0.3, forced

through the point at which no imputation errors occur

and therefore no sample-size inflation occurs, provides

a close fit for most populations, with the exceptions of

the San and Mbuti Pygmy populations. The slope for this

regression is 6.911, and the corresponding regression for

the maximal sample-size inflation factor has a slope of

10.177. Excluding the San and Mbuti Pygmy populations,

the slopes of the regressions for the minimal and maximal

sample-size inflation factors decrease to 6.203 and 8.836,

respectively (Figure S1, available online). The regression

slopes generally lie between 5 and 13 when MAFcontrols is

fixed at various values across its range, with the San and

Mbuti Pygmy populations either included or excluded

(Figures S1 and S2). These values have the interpretation

that each 1% increase in overall imputation error rate

translates to an increase of ~5%–13% in the sample size

required for maintaining power.

Our results have important implications for imputation

studies. In the tag-SNP setting, for small values of x, a high

LD level of r2 ¼ 1 � x produces a relatively small sample-

size inflation factor of 1/(1 � x) z1 þ x, so that each 1%

loss in the r2 measure of LD leads to a ~1% gain in the

required sample size. In the imputation setting, however,

imputation accuracy of 1 � x produces a typical inflation
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A B Figure 3. Maximal and Minimal Sample-
Size Inflation Factors at Imputed Loci as
Functions of the True Minor Allele
Frequency in Controls, in Each of 29 Popu-
lations
For each value of MAFcontrols from 0.005
to 0.5 with a step size of 0.005, the value
plotted is the maximal or minimal value
of the inflation factor f obtained across
choices of MAFcases ranging from 0 to 1
with a step size of 0.001 (MAFcases s
MAFcontrols). Graphs for individual popula-
tions are color-coded by geographic region.
(A) Maximal sample-size inflation factor.
(B) Minimal sample-size inflation factor.

factor of ~1 þ 5x to ~1 þ 13x, so that

each 1% loss in imputation accuracy

leads to a ~5%–13% increase in the

required sample size. As a result, even

low levels of imputation error

can have sizeable consequences. For

example, measures that aim to assess

genomic coverage for imputation

methods might need to require strin-

gent levels of imputation error in evaluating the proportion

of the genome that is suited to imputation-based associa-

tion mapping. Studies that aim to confirm associations at

imputed markers in populations with lower imputation

accuracy might inherently be disadvantaged for success in

replication studies. In these various settings, careful assess-

ment of appropriate sample sizes in power calculations will

be essential for progress in imputation-based disease-gene

identification. One key observation is that imputation error

produces the greatest sample-size inflation for markers with

low minor allele frequency (MAFcontrols % 0.1), and for such

markers, the sample-size inflation for each 1% imputation

error can be as high as ~15%–35% (Figures S1 and S2). As

GWA efforts begin to focus on the impact of rare alleles on

complex diseases, the potentially serious effects of imputa-

tion error for detecting such alleles will be a central consid-

eration for forthcoming studies. For such studies, it will be

informative to examine values of the imputation error

parameters 3ij evaluated specifically from rare alleles.

We note that the linear dependence of the minimal and

maximal sample-size inflation factor on overall imputation

error rate, as illustrated in Figure 4, is only approximate.

This approximate linear relationship arises because the

overall imputation error rate is a composite parameter

dependent on the six underlying 3ij parameters, each of

which affects the inflation factor in an approximately

linear manner. On the basis of a first-order Taylor series

expansion for f, for each i and j, Kang et al.22 derived cost

functions Cij, so that if all error parameters except 3ij are set

to zero and 3ij is small, then the sample-size inflation factor

is approximately 1 þ Cij3ij. These linear approximations

accurately reflect the sample-size inflation factor in most

populations except at the lowest values of MAFcases and
696 The American Journal of Human Genetics 85, 692–698, November 13, 2009



MAFcontrols (results not shown) and suggest that in general,

the greatest cost is incurred from errors in imputing minor

allele homozygotes as major allele homozygotes (Figure 5).

It is noteworthy that the linear regressions in Figure 4

provide the poorest underestimates in the San population,

for which the parameter 313 for the most costly type of

error is high and for which the pattern of errors differs

somewhat from the corresponding patterns in the other

populations (Figure 1).

Although an increased sample size provides one

approach to maintaining power in an imputation-based

0 0.02 0.04 0.06 0.08 0.10 0.12

0
0.

5
1

1.
5

2
2.

5
3

0.
25

0.
5

0.
75

1.
25

1.
5

1.
75

2.
25

2.
5

2.
75

Maximal f, slope: 10.177

Minimal f, slope: 6.911

Overall imputation error rate

S
am

pl
e 

si
ze

 in
fla

tio
n 

fa
ct

or

Adygei
Balochi
Bantu (Kenya)
Bantu (S. Africa)
Basque
Bedouin
Biaka Pygmy
Burusho
Cambodian
Colombian
Daur
Druze
Kalash
Lahu
Mandenka

Maya
Mbuti Pygmy
Melanesian
Mongola
Mozabite
Palestinian
Papuan
Pima
Russian
San
Uygur
Yakut
Yi
Yoruba

Africa
Middle East
Europe
C/S Asia

East Asia
Oceania
America

Figure 4. Maximal and Minimal Sample-Size Inflation Factors as
Functions of the Overall Imputation Error Rate, for an Imputed
Disease Locus with a True Minor Allele Frequency of 0.3 in
Controls
Populations are color-coded by geographic region, and two data
points appear for each population: a maximum and a minimum.
Best-fit linear-regression lines for the maxima and minima, forced
through the point (0,1), indicate the increase in the inflation
factor with increasing imputation error rate. For example, the lines
indicate that in most populations, at MAFcontrols ¼ 0.3, imputation
error rates of 2%–6% correspond to sample-size inflation factors of
~14%–53%, and each additional 1% increase in imputation error
corresponds to a ~7%–10% increase in the inflation factor.
The American
study, an alternative strategy is to decrease imputation

error instead. Reductions in imputation error can be

achieved through a combination of algorithmic advances

and optimal choices of imputation algorithms,13,15

improvements in usage of existing reference panels,19,26

and expanded marker density and sample inclusion in

these panels.18,27 A fourth approach involves incorpo-

rating information on relatives of study subjects for the

improvement of phase estimates at measured markers.

Although this approach will not eliminate errors owing

to incorrect imputation conditional on correctly estimated

phase, it will reduce imputation errors that arise from

incorrect phase estimation.

For populations with relatively little imputation error in

which large samples are easily obtained, the required

sample-size increase produced by imputation error might

not pose a significant obstacle for GWA studies. In other

populations in which subject recruitment is difficult and

the sample-size inflation required for maintaining power

is extreme, reduction of imputation error might be more

feasible than an increase in sample size. As GWA studies

begin diversifying to incorporate additional populations

beyond the populations of European origin that have

been typical of most investigations to date,28 it will be

important to evaluate the relative merits of the various

approaches for overcoming the consequences of imputa-

tion error to improve the potential of imputation-based

association studies.
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Figure 5. Cost Coefficients as Functions of MAFcases for the Fixed
Value MAFcontrols ¼ 0.3
The coefficient Cij provides an approximation for the relative
magnitude of the sample-size inflation that is due to the error
parameter 3ij. Thus, a small increase of x in the imputation error
parameter 3ij adds approximately Cijx to the sample-size inflation
factor. The sum of the six cost coefficients, Csum, has the interpre-
tation that Csumx is added to the sample-size inflation factor when
all six of the 3ij are simultaneously set to x. Each of the cost coeffi-
cients was evaluated for values of MAFcases from 0.005 to 0.995 at
intervals of 0.01.
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Supplemental Data

Supplemental Data include two figures and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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